On the Decidability of Connectedness Constraints in 2D and 3D Euclidean Spaces
نویسندگان
چکیده
We investigate (quantifier-free) spatial constraint languages with equality, contact and connectedness predicates, as well as Boolean operations on regions, interpreted over low-dimensional Euclidean spaces. We show that the complexity of reasoning varies dramatically depending on the dimension of the space and on the type of regions considered. For example, the logic with the interior-connectedness predicate (and without contact) is undecidable over polygons or regular closed sets in R, EXPTIMEcomplete over polyhedra in R, and NP-complete over regular closed sets in R.
منابع مشابه
Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملOn fuzzy soft connected topological spaces
In this work, we introduce notion of connectedness on fuzzy soft topological spaces and present fundamentals properties. We also investigate effect to fuzzy soft connectedness. Moreover, $C_i$-connectedness which plays an important role in fuzzy topological space extend to fuzzy soft topological spaces.
متن کامل$L$-Topological Spaces
By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness...
متن کاملThe notions of closedness and D-connectedness in quantale-valued approach spaces
In this paper, we characterize local $T_{0}$ and $T_{1}$ quantale-valued gauge spaces, show how these concepts are related to each other and apply them to $mathcal{L}$-approach distance spaces and $mathcal{L}$-approach system spaces. Furthermore, we give the characterization of a closed point and $D$-connectedness in quantale-valued gauge spaces. Finally, we compare all these concepts to each o...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کامل